Вы здесь

Метод приложения крутящего момента

Самый распространенный и, вероятно, самый простой метод затяжки резьбовых соединений. Он заключается в создании на гайке крутящего момента, обеспечивающего необходимое усилие предварительной затяжки. А главное его преимущество в том, что он очень прост, занимает минимум времени и используемый инструмент сравнительно не дорог.

Крутящий момент (Мкр, в Нм) – это момент силы, приложенной к гайке на определенном расстоянии от её центра (произведение силы на плечо), действие которого вызывает поворот гайки вокруг оси.

Болт в резьбовом соединении находится под постоянным механическим напряжением и устойчив к усталости. Однако, если первоначальное усилие слишком мало, под действием изменяющихся нагрузок болт быстро будет повреждаться. Если первоначальное усилие слишком велико, процесс затяжки может привести к разрушению болта. Следовательно, надежность зависит от правильности выбора первоначального усилия и, соответственно, необходим контроль крутящего момента на гайке.



Метод заключается в создании на гайке крутящего момента, в результате чего гайка закручивается по резьбе, создавая усилие затяжки


Расход приложенного усилия

Расход приложенного усилия

Расположение трущихся поверхностей

Расположение трущихся поверхностей

Критичным фактором при затяжке резьбового соединения является усилие предварительной затяжки соединяемых деталей. Крутящий момент косвенно характеризует величину усилия предварительной затяжки.

Усилие предварительной затяжки (Q, в H), на которое производится затяжка резьбового соединения, обычно принимается в пределах 75-80%, в отдельных случаях 90%, от пробной нагрузки.

Пробная нагрузка (N, в H) является контрольной величиной, которую стержневая крепежная деталь должна выдержать при испытаниях. Пробная нагрузка приблизительно, на 5%-10% меньше, произведения предела текучести стержневой крепежной детали на номинальную площадь сечения.

Пробная нагрузка, в соответствии с ГОСТ 1759.4, для крепежных деталей с классом прочности 6.8 и выше составляет 74-79% от минимальной разрушающей нагрузки (P, в H).

Минимальная разрушающая нагрузка соответствует произведению предела прочности (временному сопротивлению разрыву) стержневой крепежной детали на номинальную площадь сечения.

Соответственно, усилие предварительной затяжки не должно приводить к переходу стержневой крепежной детали из области упругой в область пластической деформации материала.

Нередко возникает вопрос почему «предварительной». Дело в том, что затяжка соединений подразумевает создание во всех деталях - и крепежных, и соединяемых, некоторых напряжений. При этом в упруго напряженных телах проявляются некоторые механизмы пластических деформаций, ведущие к убыванию напряжений во времени (явление релаксации напряжений). Поэтому по истечении некоторого времени усилие затяжки соединения несколько снижается без каких либо дополнительных силовых воздействий на него.

Требуемый крутящий момент затяжки конкретного соединения зависит от нескольких переменных:

  1. Коэффициент трения между гайкой и стержневой крепежной деталью;
  2. Коэффициент трения между поверхностью гайки и поверхностью соединяемой детали;
  3. Качество и геометрия резьбы.

Наибольшее значение имеет трение в резьбе между гайкой и стержневой крепежной деталью, а также гайкой и поверхностью соединяемой детали, которые зависят от таких факторов как, состояние контактных поверхностей, вид покрытия, наличие смазочного материала, погрешности шага и угла профиля резьбы, отклонение от перпендикулярности опорного торца и оси резьбы, скорость завинчивания и др.

Потери на трение могут быть достаточно большими. При практически сухом трении, грубой поверхности и усадке материала, потери могут быть такими большими, что при затяжке на непосредственно напряжение соединения останется не более 10% момента (см. рисунок выше). Остальные 90% уходят на преодоление сопротивления трения и усадку.

Для иллюстрации покажем следующий пример: когда оборудование установлено, соединения новые и чистые. Через несколько лет работы они становятся загрязненными, перекодированными и т.п. Таким образом, при откручивании и затяжке, «паразитное» трение больше. И хотя гайковерт будет показывать требуемый момент, требуемое сжатие соединения не будет достигнуто. И когда при эксплуатации, на резьбовое соединение будет воздействовать нагрузки или вибрация, велик риск самоослабления соединения и как результат — аварии.

Коэффициент трения можно снизить, используя масло, но не чрезмерно, поскольку при этом велика опасность чрезмерного падения сопротивления, и превышения силы напряжения соединения, что может привести к разрушению стержневой крепежной детали.

Значения коэффициента трения в реальных условиях сборки можно лишь прогнозировать. Как показывают многочисленные эксперименты, они не стабильны. В табл. приведены их справочные значения.

Таблица Значения коэффициентов трения в резьбе стержневой крепежной детали из стали µр и между поверхностью гайки и поверхностью соединяемой детали µт

 

Вид покрытия Коэффициент трения Без смазочного материала Машинное масло Солидол синтетический Машинное масло с МоS2
Без покрытия µр 0,32-0,52 0,19-0,24 0.16-0,21 0,11-0,15
µт 0,14-0,24 0,12-0.14 0,11-0,14 0,07-0,10
Цинкование µр 0,24-0,48 0,15-0,20 0,14-0,19 0,14-0,19
µт 0,07-0.10 0.09-0,12 0,08-0,10 0,06-0,09
Фосфатирование µр 0,15-0,50 0,15-0,20 0,15-0.19 0.14-0,16
µт 0,09-0,12 0,10-0,13 0,09-0,13 0,07-0,13
Оксидирование µр 0.50-0,84 0,39-0.51 0,37-0,49 0.15-0,21
µт 0,20-0,43 0,19-0.29 0.19-0,29 0,07-0,11

Для крепежа из нержавеющей стали А2 и А4 коэффициенты трения:

  1. Без смазочного материала:
    µр– 0,23- 0,50 
    µт — 0,08-0,50
  2. Со смазкой, включающей хлоропарафин:
    µр– 0,10- 0,23 
    µт — 0,08-0,12

Номинальный крутящий момент рассчитывается по формуле:

Мкр = 0,001 Q*(0,16*Р + µр *0 ,58* d2 + µт *0,25*(dт + d0)),

где µр– коэффициент трения в резьбе между гайкой и стержневой крепежной деталью;

µт — коэффициент трения между поверхностью гайки и поверхностью соединяемой детали;

dт – диаметр опорной поверхности головки болта или гайки, мм;

d0 – диаметр отверстия под крепёжную деталь, мм;

Р – шаг резьбы, мм;

d2– средний диаметр резьбы, мм;

Q – усилие предварительной затяжки.

Для упрощения расчетов Мкр коэффициенты трения усредняют. Средние коэффициенты трения крепежных соединений из стали соответствуют следующим состояниям поверхности:

  • 0,1 – фосфатированный или оцинкованный болт, хорошо смазанная поверхность
  • 0,14 – химически оксидированный или оцинкованный болт, плохое качество смазки
  • 0,2 – болт без покрытия, нет смазки

Усилие предварительной затяжки определяются требованиями к соединению, поэтому наши рекомендации выбора усилий предварительной затяжки и крутящего момента, приведенные в таблицах, являются справочными и не могут быть приняты как руководство к действию, учитывая множество факторов оказывающих роль на качество соединения.

Для выбора усилия предварительной затяжки резьбовых соединений и крутящего момента различного класса прочности можно использовать приведенные ниже таблицы. Таблицы приведены для соединений, имеющих средний коэффициент трения 0,14.

Усилие предварительной затяжки и крутящий момент резьбового соединения с крупным шагом резьбы и коэффициентом трения 0,14

Номинальный диаметр резьбы Шаг резьбы, P Номинальная площадь сечения As, мм? Усилие предварительной затяжки Q, H Крутящий момент Мкр Нм
4.6 5.6 8.8 10.9 12.9 4.6 5.6 8.8 10.9 12.9
М4 0,7 8,78 1280 1710 4300 6300 7400 1,02 1,37 3,3 4,8 5,6
М5 0,8 14,2 2100 2790 7000 10300 12000 2,0 2,7 6,5 9,5 11,2
М6 1,0 20,1 2960 3940 9900 14500 17000 3,5 4,6 11,3 16,5 19,3
М8 1,25 36,6 5420 7230 18100 26600 31100 8,4 11 27,3 40,1 46,9
М10 1,5 58 8640 11500 28800 42200 49400 17 22 54 79 93
М12 1,75 84,3 12600 16800 41900 61500 72000 29 39 93 137 160
М14 2,0 115 17300 23100 57500 84400 98800 46 62 148 218 255
М16 2,0 157 23800 31700 78800 115700 135400 71 95 230 338 395
М18 2,5 193 28900 38600 99000 141000 165000 97 130 329 469 549
М20 2,5 245 37200 49600 127000 181000 212000 138 184 464 661 773
М22 2,5 303 46500 62000 158000 225000 264000 186 250 634 904 1057
М24 3,0 353 53600 71400 183000 260000 305000 235 315 798 1136 1329
М27 3,0 459 70600 94100 240000 342000 400000 350 470 1176 1674 1959
М30 3,5 561 85700 114500 292000 416000 487000 475 635 1597 2274 2662
М33 3,5 694 107000 142500 363000 517000 605000 645 865 2161 3078 3601
М36 4,0 817 125500 167500 427000 608000 711000 1080 1440 2778 3957 4631
М39 4,0 976 151000 201000 512000 729000 853000 1330 1780 3597 5123 5994

Усилие предварительной затяжки и крутящий момент резьбового соединения с мелким шагом резьбы и коэффициентом трения 0,14

Номинальный диаметр резьбы Шаг резьбы, P Номинальная площадь сечения As, мм? Усилие предварительной затяжки Q, H Крутящий момент Мкр Нм
8.8 10.9 12.9 8.8 10.9 12.9
М8 1 39,2 19700 28900 33900 29,2 42,8 50,1
М10 1,25 61,2 30800 45200 52900 57 83 98
М12 1,25 92,1 46800 68700 80400 101 149 174
М14 1,5 125 63200 92900 108700 159 234 274
М16 1,5 167 85500 125500 146900 244 359 420
М18 1,5 216 115000 163000 191000 368 523 613
М20 1,5 272 144000 206000 241000 511 728 852
М22 1,5 333 178000 253000 296000 692 985 1153
М24 2 384 204000 290000 339000 865 1232 1442
М27 2 496 264000 375000 439000 1262 1797 2103
М30 2 621 331000 472000 552000 1756 2502 2927

ОТКРУЧИВАНИЕ

При откручивании гаек требуется крутящий момент большей величины, чем при затяжке. Это объясняется коррозией резьбового соединения, взаимным проникновением материалов болта и гайки в зоне резьбы под действием длительной нагрузки.

Общее правило – при откручивании требуется момент в 1,3-1,5 раза больший, чем при затяжке!

При откручивании прокорродированных и закрашенных соединений часто требуется инструмент с моментом в 2 раза больше, чем при затяжке. Но лучше в таких случаях использовать специальные средства для разрушения продуктов коррозии. Это снизит трение и, соответственно, силы воздействующие на упорную часть инструмента, продлевая срок его жизни.

Источник

Поля отмеченные * обязательны для заполнения

15 + 4 =
Решите эту простую математическую задачу и введите результат. Например, для 1+3, введите 4.
13 + 1 =
Решите эту простую математическую задачу и введите результат. Например, для 1+3, введите 4.

Полезные статьи

При всем изобилии предложения на сегодняшний день, первоначально выбор сделать очень не просто.
Самый распространенный и, вероятно, самый простой метод затяжки резьбовых соединений.
Компания Полидэк рада презентовать своим клиентам предстоящие новинки сверлильных станков на магнитной подошве от компании Евробур .